2006年06月23日

対談:続・田んぼMECEの具体例

koppe :
先日は、田んぼMECEの作り方を4つ目のキーワードの「福祉」を見つけるところまでやったけど、まだ田んぼMECEは完成してないよね?
mokuren :
というと?
koppe :
社会へのお金の流入=税金と消費、個人へのお金の流出=労働と福祉、ということまでは分かったけど、まだ田んぼにはなってなくて、"日"を90度回転した状態だよね?
mokuren :
ああ、そういうことですか。まだ"田"の形になっていないと。
koppe :
そうです。次はこれを"日"→"田"にするんだよね?
mokuren :
そうです。
koppe :
「福祉」の見つけ方までは、今までやってきた方法でいいんでしょ?
つまり、まず3つ挙げる。
mokuren :
そうだね。
koppe :
それを2つと1つに分ける分類の軸を見つける。(流入と流出)
mokuren :
そこまでは、OKです。問題はこの次。
koppe :
足りない1つが何かを考える。(労働以外に流入するものは何か)
mokuren :
直感的に考えて足りない1つを見つけ出す。これはこれで、一つの方法だと思うよ。
koppe :
このあと、田んぼに分けるんでしょう?具体的には、流入と流出に分類されているもの1つづつで似たもの同士を集めて共通点を探す。
koppe :
とすると、考えられる組み合わせは、「税金ー労働」と「消費ー福祉」の組み合わせか、「税金ー福祉」と「労働ー消費」の組み合わせしかないから、このうち、どっちの組み合わせのほうがより共通性があるかといえば、後者のほう。
mokuren :
そうそう、いいところまできました。この「税金ー福祉」、「労働ー消費」を一般的な2対言葉で言い直してください。そうすると、新たな視点がみえてくると思うよ。
koppe :
「税金ー福祉」は国・自治体、「労働ー消費」は民間。
これで 田んぼMECEが完成?
mokuren :
おしいね。「国・自治体」と「民間」を一つの2対言葉でいえるとすっきりするよ。
mokuren :
それは、「官民」です。
mokuren :
最初に見つけた分類軸が「出入」であり、今回見つけた新たな分類軸が「官民」となります。これで、4象限(田んぼ)の分類軸となるべき2軸がそれぞれが2対言葉で2等分されたことになるでしょ。
mokuren :
3つを挙げたあと、4象限に分解するのに足りない4つめを直感的に見つけ出し、それから田んぼの分類軸を見つけ出す。これがひとつの方法。
でも、4つめが直感的に見つけ出せないときはどうするんだろうね??
koppe :
3つしか挙がっていない状態で、4つめを「?」としたまま考えるの?
mokuren :
そうです。
流入と流出とは別の分解軸ですでに見つけ出されてる問題点を2分割します。このときのポイントは、すでに見つけ出されている3つの問題点をA,B,Cとして、それが「A,B」と「C」に分けることができていたとすると、「A,C」と「B」または「B,.C」と「A」に分けることが可能な新たな分解軸を見つけることにあります。
koppe :
つまり、さっきの手順を田んぼMECEを作る手順の1つめのパターンとすると、2つめのパターンは、3つしか上がっていない状態で、4つめを「?」としたまま、2つめの分類軸を見つけてから、「?」が何かを見つける。ですか?
mokuren :
そうですね。
koppe :
ちょっとやってみます。
流入=「税金と消費」、流出=「労働」に分かれているわけだから、2つめの分類軸をみつけたいなら、「税金」と「消費」の違いはなにか?と考えればいいのかな?
mokuren :
そうそう、いい感じ。
koppe :
「税金」と「消費」の違いは「対価なし」と「対価あり」。「労働」は「対価あり」なので、「対価なし」の「流出」はなにかと考えればいいわけだ。で、「福祉」が見つかると。
mokuren :
それでよいと思うよ。
koppe :
「福祉」が見つかったら一応田んぼが完成するので、田んぼに当てはめてみてから、第二の軸を見直すと、「対価ありなし」より、「官民」のほうがよりフィットしていることがわかる。2つ目の軸が確定したので田んぼMECEが完成!
mokuren :
そういう考え方もOKじゃないかな。ようは考えやすいように考えることが第一優先だから。
mokuren :
でも、軸として有り無しが浮かんだ場合は、その時点でそれをできるだけ2対言葉に置き直すべきだと思うよ。
koppe :
その理由は?
mokuren :
有りと無しは「有り」と「それ以外」と同じことであり、「それ以外」が無限の範囲を言っている可能性が高いためです。これでは、「なし」=「それ以外」はなんでもありになってしまう可能性がある。
mokuren :
どちらも有限にするためには、極力、2対言葉で表現すべきだと思う。
koppe :
以前私が書いた記事で、「それとそれ以外」に分ける例で、「好き」と「好きでない」に分けて、「好きでない」を「嫌い」と「好きでも嫌いでもない」に分けたけど、それは軸としては不適当ということですね?
mokuren :
不適当とまでは言わないけど、そのような形で分解していくと、どこかで思考の行き詰まりが発生する可能性が高くなるんじゃないかな。
koppe :
うーん。感覚的には確かに好きでも嫌いでもないというゾーンが存在するけど、このゾーンの境界は、本人しか分かりませんね。
koppe :
ということは、分解の境界を他人と共有することができないということになる。軸を2対言葉にして、強制的にどちらかに倒すようにすれば、境界の位置のあいまい性は排除されるね。
mokuren :
そうですね。これで、4象限(田んぼ)MECEの考え方が理解できたでしょうか?
koppe :
分類軸を見つけ出すのがポイントだということは分かりました。それが見つかれば、別の問題を考えるとき、「出入」という観点ではどうなのか、「官民」という観点ではどうなのか、と応用することができそうですね。
mokuren :
そうだね。
ところで、この思考法をマスターするためには、2つのポイントがあります。
mokuren :
一つは、この思考手順があることを理解すること。
mokuren :
もう一つが、「流入・流出」、「官民」といった言われてみると当たり前の2対言葉がすらすらと出てくるように訓練もしく経験を積むことです。
mokuren :
最初はなかなか、2対言葉が浮かんでこないと思います。それを乗り越えるために必要なのは、この思考手順で新たな第4の何かを見つけることができるという信念を持つことかな。
koppe :
最後までがんばるには信念がいるってことね。絶対見つかるはずって確信を持っていないと、考えるのがしんどいので途中であきらめてしまうもんね。
koppe :
そういえば、父がよくいってました。ほとんどの人は、95%のところまで行っているのに、そこであきらめてしまうと。最後の5%を乗り越えるのに必要なのが信念なんでしょうね。
mokuren :
そうですね。これで、今回の対談は終わりましょうか?
koppe :
これから意識して練習してみます。mokuren先生(?)どうもありがとうございました。
posted by koppe at 23:01| Comment(0) | TrackBack(0) | 9.4象限MECEの作り方 | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前:

メールアドレス:

ホームページアドレス:

コメント:

認証コード: [必須入力]


※画像の中の文字を半角で入力してください。
この記事へのトラックバックURL
http://blog.seesaa.jp/tb/19743165

この記事へのトラックバック
×

この広告は1年以上新しい記事の投稿がないブログに表示されております。